Search results for "Plant Root Nodulation"

showing 2 items of 2 documents

Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical-ecological-climatic regions of India are nodulated by Bradyrhizobi…

2009

International audience; Vigna mungo, Vigna radiata and Vigna unguiculata are important legume crops cultivated in India, but little is known about the genetic resources in native rhizobia that nodulate these species. To identify these bacteria, a core collection of 76 slow-growing isolates was built from root nodules of V. mungo, V. radiata and V. unguiculata plants grown at different sites within three agro-ecological-climatic regions of India. The genetic diversity of the bacterial collection was assessed by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified DNA fragments of the 16S–23S rDNA intergenic spacer (IGS) region, and the symbiotic genes nifH and nodC. One …

Root noduleVigna spp.RadiataDIVERSITYApplied Microbiology and BiotechnologyPlant Root NodulationPolymerase Chain ReactionVignaSymbiotic genesCluster AnalysisBradyrhizobiumPhylogeny0303 health sciencesDiversitybiologyEcologyfood and beveragesFabaceae[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyRestriction fragment length polymorphismOxidoreductasesRoot Nodules PlantPolymorphism Restriction Fragment LengthDNA BacterialBradyrhizobium yuanmingensePHYLOGENYVIGNA SPP.Molecular Sequence DataIndiaN-AcetylglucosaminyltransferasesMicrobiologyBradyrhizobiumRhizobia03 medical and health sciencesVIGNA RADIATABacterial ProteinsBotanyDNA Ribosomal SpacerSYMBIOTIC GENESEcology Evolution Behavior and Systematics030304 developmental biologyRELATION HOTE-PARASITEGenetic diversity030306 microbiologyBRADYRHIZOBIUMSequence Analysis DNA15. Life on landVIGNA MUNGObiology.organism_classificationMULTI-LOCUS SEQUENCE ANALYSISMulti-locus sequence analysis
researchProduct

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

2009

To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc–) mutan…

0106 biological sciencesPhysiologychampignon phytopathogèneBiologyGenes Plant01 natural sciencesPlant Root NodulationPlant RootsMicrobiology03 medical and health sciencesGene Expression Regulation PlantARBUSCULAR MYCORRHIZAL FUNGUSMycorrhizaeGene expressionMedicago truncatulaSpore germination[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMycorrhizaSymbiosisGene030304 developmental biologyPlant Proteins0303 health sciencesAppressoriumExpressed sequence taggénomegènefungifood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationMedicago truncatulaArbuscular mycorrhizaracinesymbioseAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct